1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
// Malicious JPEG files can cause operations in the idct to overflow.
// One example is tests/crashtest/images/imagetestsuite/b0b8914cc5f7a6eff409f16d8cc236c5.jpg
// That's why wrapping operators are needed.
use crate::parser::Dimensions;

pub(crate) fn choose_idct_size(full_size: Dimensions, requested_size: Dimensions) -> usize {
    fn scaled(len: u16, scale: usize) -> u16 { ((len as u32 * scale as u32 - 1) / 8 + 1) as u16 }

    for &scale in &[1, 2, 4] {
        if scaled(full_size.width, scale) >= requested_size.width || scaled(full_size.height, scale) >= requested_size.height {
            return scale;
        }
    }

    return 8;
}

#[test]
fn test_choose_idct_size() {
    assert_eq!(choose_idct_size(Dimensions{width: 5472, height: 3648}, Dimensions{width: 200, height: 200}), 1);
    assert_eq!(choose_idct_size(Dimensions{width: 5472, height: 3648}, Dimensions{width: 500, height: 500}), 1);
    assert_eq!(choose_idct_size(Dimensions{width: 5472, height: 3648}, Dimensions{width: 684, height: 456}), 1);
    assert_eq!(choose_idct_size(Dimensions{width: 5472, height: 3648}, Dimensions{width: 999, height: 456}), 1);
    assert_eq!(choose_idct_size(Dimensions{width: 5472, height: 3648}, Dimensions{width: 684, height: 999}), 1);
    assert_eq!(choose_idct_size(Dimensions{width: 500, height: 333}, Dimensions{width: 63, height: 42}), 1);

    assert_eq!(choose_idct_size(Dimensions{width: 5472, height: 3648}, Dimensions{width: 685, height: 999}), 2);
    assert_eq!(choose_idct_size(Dimensions{width: 5472, height: 3648}, Dimensions{width: 1000, height: 1000}), 2);
    assert_eq!(choose_idct_size(Dimensions{width: 5472, height: 3648}, Dimensions{width: 1400, height: 1400}), 4);
    
    assert_eq!(choose_idct_size(Dimensions{width: 5472, height: 3648}, Dimensions{width: 5472, height: 3648}), 8);
    assert_eq!(choose_idct_size(Dimensions{width: 5472, height: 3648}, Dimensions{width: 16384, height: 16384}), 8);
    assert_eq!(choose_idct_size(Dimensions{width: 1, height: 1}, Dimensions{width: 65535, height: 65535}), 8);
    assert_eq!(choose_idct_size(Dimensions{width: 5472, height: 3648}, Dimensions{width: 16384, height: 16384}), 8);
}

pub(crate) fn dequantize_and_idct_block(scale: usize, coefficients: &[i16], quantization_table: &[u16; 64], output_linestride: usize, output: &mut [u8]) {
    match scale {
        8 => dequantize_and_idct_block_8x8(coefficients, quantization_table, output_linestride, output),
        4 => dequantize_and_idct_block_4x4(coefficients, quantization_table, output_linestride, output),
        2 => dequantize_and_idct_block_2x2(coefficients, quantization_table, output_linestride, output),
        1 => dequantize_and_idct_block_1x1(coefficients, quantization_table, output_linestride, output),
        _ => panic!("Unsupported IDCT scale {}/8", scale),
    }
}

// This is based on stb_image's 'stbi__idct_block'.
fn dequantize_and_idct_block_8x8(coefficients: &[i16], quantization_table: &[u16; 64], output_linestride: usize, output: &mut [u8]) {
    debug_assert_eq!(coefficients.len(), 64);

    let mut temp = [0i32; 64];

    // columns
    for i in 0 .. 8 {
        // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing
        if coefficients[i + 8] == 0 && coefficients[i + 16] == 0 && coefficients[i + 24] == 0 &&
                coefficients[i + 32] == 0 && coefficients[i + 40] == 0 && coefficients[i + 48] == 0 &&
                coefficients[i + 56] == 0 {
            let dcterm = (coefficients[i] as i32 * quantization_table[i] as i32).wrapping_shl(2);
            temp[i]      = dcterm;
            temp[i + 8]  = dcterm;
            temp[i + 16] = dcterm;
            temp[i + 24] = dcterm;
            temp[i + 32] = dcterm;
            temp[i + 40] = dcterm;
            temp[i + 48] = dcterm;
            temp[i + 56] = dcterm;
        }
        else {
            let s0 = coefficients[i] as i32      * quantization_table[i] as i32;
            let s1 = coefficients[i + 8] as i32  * quantization_table[i + 8] as i32;
            let s2 = coefficients[i + 16] as i32 * quantization_table[i + 16] as i32;
            let s3 = coefficients[i + 24] as i32 * quantization_table[i + 24] as i32;
            let s4 = coefficients[i + 32] as i32 * quantization_table[i + 32] as i32;
            let s5 = coefficients[i + 40] as i32 * quantization_table[i + 40] as i32;
            let s6 = coefficients[i + 48] as i32 * quantization_table[i + 48] as i32;
            let s7 = coefficients[i + 56] as i32 * quantization_table[i + 56] as i32;

            let p2 = s2;
            let p3 = s6;
            let p1 = p2.wrapping_add(p3).wrapping_mul(stbi_f2f(0.5411961));
            let t2 = p1.wrapping_add(p3.wrapping_mul(stbi_f2f(-1.847759065)));
            let t3 = p1.wrapping_add(p2.wrapping_mul(stbi_f2f(0.765366865)));
            let p2 = s0;
            let p3 = s4;
            let t0 = stbi_fsh(p2.wrapping_add(p3));
            let t1 = stbi_fsh(p2.wrapping_sub(p3));
            let x0 = t0.wrapping_add(t3);
            let x3 = t0.wrapping_sub(t3);
            let x1 = t1.wrapping_add(t2);
            let x2 = t1.wrapping_sub(t2);
            let t0 = s7;
            let t1 = s5;
            let t2 = s3;
            let t3 = s1;
            let p3 = t0.wrapping_add(t2);
            let p4 = t1.wrapping_add(t3);
            let p1 = t0.wrapping_add(t3);
            let p2 = t1.wrapping_add(t2);
            let p5 = p3.wrapping_add(p4).wrapping_mul(stbi_f2f(1.175875602));
            let t0 = t0.wrapping_mul(stbi_f2f(0.298631336));
            let t1 = t1.wrapping_mul(stbi_f2f(2.053119869));
            let t2 = t2.wrapping_mul(stbi_f2f(3.072711026));
            let t3 = t3.wrapping_mul(stbi_f2f(1.501321110));
            let p1 = p5.wrapping_add(p1.wrapping_mul(stbi_f2f(-0.899976223)));
            let p2 = p5.wrapping_add(p2.wrapping_mul(stbi_f2f(-2.562915447)));
            let p3 = p3.wrapping_mul(stbi_f2f(-1.961570560));
            let p4 = p4.wrapping_mul(stbi_f2f(-0.390180644));
            let t3 = t3.wrapping_add(p1.wrapping_add(p4));
            let t2 = t2.wrapping_add(p2.wrapping_add(p3));
            let t1 = t1.wrapping_add(p2.wrapping_add(p4));
            let t0 = t0.wrapping_add(p1.wrapping_add(p3));

            // constants scaled things up by 1<<12; let's bring them back
            // down, but keep 2 extra bits of precision
            let x0 = x0.wrapping_add(512);
            let x1 = x1.wrapping_add(512);
            let x2 = x2.wrapping_add(512);
            let x3 = x3.wrapping_add(512);

            temp[i]      = x0.wrapping_add(t3).wrapping_shr(10);
            temp[i + 56] = x0.wrapping_sub(t3).wrapping_shr(10);
            temp[i + 8]  = x1.wrapping_add(t2).wrapping_shr(10);
            temp[i + 48] = x1.wrapping_sub(t2).wrapping_shr(10);
            temp[i + 16] = x2.wrapping_add(t1).wrapping_shr(10);
            temp[i + 40] = x2.wrapping_sub(t1).wrapping_shr(10);
            temp[i + 24] = x3.wrapping_add(t0).wrapping_shr(10);
            temp[i + 32] = x3.wrapping_sub(t0).wrapping_shr(10);
        }
    }

    for i in 0 .. 8 {
        // no fast case since the first 1D IDCT spread components out
        let s0 = temp[i * 8];
        let s1 = temp[i * 8 + 1];
        let s2 = temp[i * 8 + 2];
        let s3 = temp[i * 8 + 3];
        let s4 = temp[i * 8 + 4];
        let s5 = temp[i * 8 + 5];
        let s6 = temp[i * 8 + 6];
        let s7 = temp[i * 8 + 7];

        let p2 = s2;
        let p3 = s6;
        let p1 = p2.wrapping_add(p3).wrapping_mul(stbi_f2f(0.5411961));
        let t2 = p1.wrapping_add(p3.wrapping_mul(stbi_f2f(-1.847759065)));
        let t3 = p1.wrapping_add(p2.wrapping_mul(stbi_f2f(0.765366865)));
        let p2 = s0;
        let p3 = s4;
        let t0 = stbi_fsh(p2.wrapping_add(p3));
        let t1 = stbi_fsh(p2.wrapping_sub(p3));
        let x0 = t0.wrapping_add(t3);
        let x3 = t0.wrapping_sub(t3);
        let x1 = t1.wrapping_add(t2);
        let x2 = t1.wrapping_sub(t2);
        let t0 = s7;
        let t1 = s5;
        let t2 = s3;
        let t3 = s1;
        let p3 = t0.wrapping_add(t2);
        let p4 = t1.wrapping_add(t3);
        let p1 = t0.wrapping_add(t3);
        let p2 = t1.wrapping_add(t2);
        let p5 = p3.wrapping_add(p4).wrapping_mul(stbi_f2f(1.175875602));
        let t0 = t0.wrapping_mul(stbi_f2f(0.298631336));
        let t1 = t1.wrapping_mul(stbi_f2f(2.053119869));
        let t2 = t2.wrapping_mul(stbi_f2f(3.072711026));
        let t3 = t3.wrapping_mul(stbi_f2f(1.501321110));
        let p1 = p5.wrapping_add(p1.wrapping_mul(stbi_f2f(-0.899976223)));
        let p2 = p5.wrapping_add(p2.wrapping_mul(stbi_f2f(-2.562915447)));
        let p3 = p3.wrapping_mul(stbi_f2f(-1.961570560));
        let p4 = p4.wrapping_mul(stbi_f2f(-0.390180644));
        let t3 = t3.wrapping_add(p1.wrapping_add(p4));
        let t2 = t2.wrapping_add(p2.wrapping_add(p3));
        let t1 = t1.wrapping_add(p2.wrapping_add(p4));
        let t0 = t0.wrapping_add(p1.wrapping_add(p3));

        // constants scaled things up by 1<<12, plus we had 1<<2 from first
        // loop, plus horizontal and vertical each scale by sqrt(8) so together
        // we've got an extra 1<<3, so 1<<17 total we need to remove.
        // so we want to round that, which means adding 0.5 * 1<<17,
        // aka 65536. Also, we'll end up with -128 to 127 that we want
        // to encode as 0..255 by adding 128, so we'll add that before the shift
        let x0 = x0.wrapping_add(65536 + (128 << 17));
        let x1 = x1.wrapping_add(65536 + (128 << 17));
        let x2 = x2.wrapping_add(65536 + (128 << 17));
        let x3 = x3.wrapping_add(65536 + (128 << 17));

        output[i * output_linestride]     = stbi_clamp(x0.wrapping_add(t3).wrapping_shr(17));
        output[i * output_linestride + 7] = stbi_clamp(x0.wrapping_sub(t3).wrapping_shr(17));
        output[i * output_linestride + 1] = stbi_clamp(x1.wrapping_add(t2).wrapping_shr(17));
        output[i * output_linestride + 6] = stbi_clamp(x1.wrapping_sub(t2).wrapping_shr(17));
        output[i * output_linestride + 2] = stbi_clamp(x2.wrapping_add(t1).wrapping_shr(17));
        output[i * output_linestride + 5] = stbi_clamp(x2.wrapping_sub(t1).wrapping_shr(17));
        output[i * output_linestride + 3] = stbi_clamp(x3.wrapping_add(t0).wrapping_shr(17));
        output[i * output_linestride + 4] = stbi_clamp(x3.wrapping_sub(t0).wrapping_shr(17));
    }
}

// 4x4 and 2x2 IDCT based on Rakesh Dugad and Narendra Ahuja: "A Fast Scheme for Image Size Change in the Compressed Domain" (2001).
// http://sylvana.net/jpegcrop/jidctred/
fn dequantize_and_idct_block_4x4(coefficients: &[i16], quantization_table: &[u16; 64], output_linestride: usize, output: &mut [u8]) {
    debug_assert_eq!(coefficients.len(), 64);
    let mut temp = [0i32; 4*4];

    const CONST_BITS: u32 = 12;
    const PASS1_BITS: u32 = 2;
    const FINAL_BITS: u32 = CONST_BITS + PASS1_BITS + 3;

    // columns
    for i in 0 .. 4 {
        let s0 = coefficients[i + 8*0] as i32 * quantization_table[i + 8*0] as i32;
        let s1 = coefficients[i + 8*1] as i32 * quantization_table[i + 8*1] as i32;
        let s2 = coefficients[i + 8*2] as i32 * quantization_table[i + 8*2] as i32;
        let s3 = coefficients[i + 8*3] as i32 * quantization_table[i + 8*3] as i32;
    
        let x0 = s0.wrapping_add(s2).wrapping_shl(PASS1_BITS);
        let x2 = s0.wrapping_sub(s2).wrapping_shl(PASS1_BITS);

        let p1 = s1.wrapping_add(s3).wrapping_mul(stbi_f2f(0.541196100));
        let t0 = p1.wrapping_add(s3.wrapping_mul(stbi_f2f(-1.847759065))).wrapping_add(512).wrapping_shr(CONST_BITS - PASS1_BITS);
        let t2 = p1.wrapping_add(s1.wrapping_mul(stbi_f2f( 0.765366865))).wrapping_add(512).wrapping_shr(CONST_BITS - PASS1_BITS);

        temp[i + 4*0] = x0.wrapping_add(t2);
        temp[i + 4*3] = x0.wrapping_sub(t2);
        temp[i + 4*1] = x2.wrapping_add(t0);
        temp[i + 4*2] = x2.wrapping_sub(t0);
    }

    for i in 0 .. 4 {
        let s0 = temp[i * 4 + 0];
        let s1 = temp[i * 4 + 1];
        let s2 = temp[i * 4 + 2];
        let s3 = temp[i * 4 + 3];

        let x0 = s0.wrapping_add(s2).wrapping_shl(CONST_BITS);
        let x2 = s0.wrapping_sub(s2).wrapping_shl(CONST_BITS);

        let p1 = s1.wrapping_add(s3).wrapping_mul(stbi_f2f(0.541196100));
        let t0 = p1.wrapping_add(s3.wrapping_mul(stbi_f2f(-1.847759065)));
        let t2 = p1.wrapping_add(s1.wrapping_mul(stbi_f2f(0.765366865)));

        // constants scaled things up by 1<<12, plus we had 1<<2 from first
        // loop, plus horizontal and vertical each scale by sqrt(8) so together
        // we've got an extra 1<<3, so 1<<17 total we need to remove.
        // so we want to round that, which means adding 0.5 * 1<<17,
        // aka 65536. Also, we'll end up with -128 to 127 that we want
        // to encode as 0..255 by adding 128, so we'll add that before the shift
        let x0 = x0.wrapping_add((1 << (FINAL_BITS - 1)) + (128 << FINAL_BITS));
        let x2 = x2.wrapping_add((1 << (FINAL_BITS - 1)) + (128 << FINAL_BITS));

        output[i * output_linestride + 0] = stbi_clamp(x0.wrapping_add(t2).wrapping_shr(FINAL_BITS));
        output[i * output_linestride + 3] = stbi_clamp(x0.wrapping_sub(t2).wrapping_shr(FINAL_BITS));
        output[i * output_linestride + 1] = stbi_clamp(x2.wrapping_add(t0).wrapping_shr(FINAL_BITS));
        output[i * output_linestride + 2] = stbi_clamp(x2.wrapping_sub(t0).wrapping_shr(FINAL_BITS));
    }
}

fn dequantize_and_idct_block_2x2(coefficients: &[i16], quantization_table: &[u16; 64], output_linestride: usize, output: &mut [u8]) {
    debug_assert_eq!(coefficients.len(), 64);

    const SCALE_BITS: u32 = 3;

    // Column 0
    let s00 = coefficients[8*0] as i32 * quantization_table[8*0] as i32;
    let s10 = coefficients[8*1] as i32 * quantization_table[8*1] as i32;

    let x0 = s00.wrapping_add(s10);
    let x2 = s00.wrapping_sub(s10);

    // Column 1
    let s01 = coefficients[8*0+1] as i32 * quantization_table[8*0+1] as i32;
    let s11 = coefficients[8*1+1] as i32 * quantization_table[8*1+1] as i32;

    let x1 = s01.wrapping_add(s11);
    let x3 = s01.wrapping_sub(s11);

    let x0 = x0.wrapping_add((1 << (SCALE_BITS-1)) + (128 << SCALE_BITS));
    let x2 = x2.wrapping_add((1 << (SCALE_BITS-1)) + (128 << SCALE_BITS));

    // Row 0
    output[0] = stbi_clamp(x0.wrapping_add(x1).wrapping_shr(SCALE_BITS));
    output[1] = stbi_clamp(x0.wrapping_sub(x1).wrapping_shr(SCALE_BITS));

    // Row 1
    output[output_linestride + 0] = stbi_clamp(x2.wrapping_add(x3).wrapping_shr(SCALE_BITS));
    output[output_linestride + 1] = stbi_clamp(x2.wrapping_sub(x3).wrapping_shr(SCALE_BITS));
}

fn dequantize_and_idct_block_1x1(coefficients: &[i16], quantization_table: &[u16; 64], _output_linestride: usize, output: &mut [u8]) {
    debug_assert_eq!(coefficients.len(), 64);

    let s0 = (coefficients[0] as i32 * quantization_table[0] as i32).wrapping_add(128 * 8) / 8;
    output[0] = stbi_clamp(s0);
}

// take a -128..127 value and stbi__clamp it and convert to 0..255
fn stbi_clamp(x: i32) -> u8
{
   // trick to use a single test to catch both cases
   if x as u32 > 255 {
      if x < 0 { return 0; }
      if x > 255 { return 255; }
   }

   x as u8
}

fn stbi_f2f(x: f32) -> i32 {
    (x * 4096.0 + 0.5) as i32
}

fn stbi_fsh(x: i32) -> i32 {
    x << 12
}